| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816 | 'use strict';Object.defineProperty(exports, '__esModule', {  value: true});exports.default = diffSequence;/** * Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. * */// This diff-sequences package implements the linear space variation in// An O(ND) Difference Algorithm and Its Variations by Eugene W. Myers// Relationship in notation between Myers paper and this package:// A is a// N is aLength, aEnd - aStart, and so on// x is aIndex, aFirst, aLast, and so on// B is b// M is bLength, bEnd - bStart, and so on// y is bIndex, bFirst, bLast, and so on// Δ = N - M is negative of baDeltaLength = bLength - aLength// D is d// k is kF// k + Δ is kF = kR - baDeltaLength// V is aIndexesF or aIndexesR (see comment below about Indexes type)// index intervals [1, N] and [1, M] are [0, aLength) and [0, bLength)// starting point in forward direction (0, 0) is (-1, -1)// starting point in reverse direction (N + 1, M + 1) is (aLength, bLength)// The “edit graph” for sequences a and b corresponds to items:// in a on the horizontal axis// in b on the vertical axis//// Given a-coordinate of a point in a diagonal, you can compute b-coordinate.//// Forward diagonals kF:// zero diagonal intersects top left corner// positive diagonals intersect top edge// negative diagonals insersect left edge//// Reverse diagonals kR:// zero diagonal intersects bottom right corner// positive diagonals intersect right edge// negative diagonals intersect bottom edge// The graph contains a directed acyclic graph of edges:// horizontal: delete an item from a// vertical: insert an item from b// diagonal: common item in a and b//// The algorithm solves dual problems in the graph analogy:// Find longest common subsequence: path with maximum number of diagonal edges// Find shortest edit script: path with minimum number of non-diagonal edges// Input callback function compares items at indexes in the sequences.// Output callback function receives the number of adjacent items// and starting indexes of each common subsequence.// Either original functions or wrapped to swap indexes if graph is transposed.// Indexes in sequence a of last point of forward or reverse paths in graph.// Myers algorithm indexes by diagonal k which for negative is bad deopt in V8.// This package indexes by iF and iR which are greater than or equal to zero.// and also updates the index arrays in place to cut memory in half.// kF = 2 * iF - d// kR = d - 2 * iR// Division of index intervals in sequences a and b at the middle change.// Invariant: intervals do not have common items at the start or end.const pkg = 'diff-sequences'; // for error messagesconst NOT_YET_SET = 0; // small int instead of undefined to avoid deopt in V8// Return the number of common items that follow in forward direction.// The length of what Myers paper calls a “snake” in a forward path.const countCommonItemsF = (aIndex, aEnd, bIndex, bEnd, isCommon) => {  let nCommon = 0;  while (aIndex < aEnd && bIndex < bEnd && isCommon(aIndex, bIndex)) {    aIndex += 1;    bIndex += 1;    nCommon += 1;  }  return nCommon;}; // Return the number of common items that precede in reverse direction.// The length of what Myers paper calls a “snake” in a reverse path.const countCommonItemsR = (aStart, aIndex, bStart, bIndex, isCommon) => {  let nCommon = 0;  while (aStart <= aIndex && bStart <= bIndex && isCommon(aIndex, bIndex)) {    aIndex -= 1;    bIndex -= 1;    nCommon += 1;  }  return nCommon;}; // A simple function to extend forward paths from (d - 1) to d changes// when forward and reverse paths cannot yet overlap.const extendPathsF = (  d,  aEnd,  bEnd,  bF,  isCommon,  aIndexesF,  iMaxF // return the value because optimization might decrease it) => {  // Unroll the first iteration.  let iF = 0;  let kF = -d; // kF = 2 * iF - d  let aFirst = aIndexesF[iF]; // in first iteration always insert  let aIndexPrev1 = aFirst; // prev value of [iF - 1] in next iteration  aIndexesF[iF] += countCommonItemsF(    aFirst + 1,    aEnd,    bF + aFirst - kF + 1,    bEnd,    isCommon  ); // Optimization: skip diagonals in which paths cannot ever overlap.  const nF = d < iMaxF ? d : iMaxF; // The diagonals kF are odd when d is odd and even when d is even.  for (iF += 1, kF += 2; iF <= nF; iF += 1, kF += 2) {    // To get first point of path segment, move one change in forward direction    // from last point of previous path segment in an adjacent diagonal.    // In last possible iteration when iF === d and kF === d always delete.    if (iF !== d && aIndexPrev1 < aIndexesF[iF]) {      aFirst = aIndexesF[iF]; // vertical to insert from b    } else {      aFirst = aIndexPrev1 + 1; // horizontal to delete from a      if (aEnd <= aFirst) {        // Optimization: delete moved past right of graph.        return iF - 1;      }    } // To get last point of path segment, move along diagonal of common items.    aIndexPrev1 = aIndexesF[iF];    aIndexesF[iF] =      aFirst +      countCommonItemsF(aFirst + 1, aEnd, bF + aFirst - kF + 1, bEnd, isCommon);  }  return iMaxF;}; // A simple function to extend reverse paths from (d - 1) to d changes// when reverse and forward paths cannot yet overlap.const extendPathsR = (  d,  aStart,  bStart,  bR,  isCommon,  aIndexesR,  iMaxR // return the value because optimization might decrease it) => {  // Unroll the first iteration.  let iR = 0;  let kR = d; // kR = d - 2 * iR  let aFirst = aIndexesR[iR]; // in first iteration always insert  let aIndexPrev1 = aFirst; // prev value of [iR - 1] in next iteration  aIndexesR[iR] -= countCommonItemsR(    aStart,    aFirst - 1,    bStart,    bR + aFirst - kR - 1,    isCommon  ); // Optimization: skip diagonals in which paths cannot ever overlap.  const nR = d < iMaxR ? d : iMaxR; // The diagonals kR are odd when d is odd and even when d is even.  for (iR += 1, kR -= 2; iR <= nR; iR += 1, kR -= 2) {    // To get first point of path segment, move one change in reverse direction    // from last point of previous path segment in an adjacent diagonal.    // In last possible iteration when iR === d and kR === -d always delete.    if (iR !== d && aIndexesR[iR] < aIndexPrev1) {      aFirst = aIndexesR[iR]; // vertical to insert from b    } else {      aFirst = aIndexPrev1 - 1; // horizontal to delete from a      if (aFirst < aStart) {        // Optimization: delete moved past left of graph.        return iR - 1;      }    } // To get last point of path segment, move along diagonal of common items.    aIndexPrev1 = aIndexesR[iR];    aIndexesR[iR] =      aFirst -      countCommonItemsR(        aStart,        aFirst - 1,        bStart,        bR + aFirst - kR - 1,        isCommon      );  }  return iMaxR;}; // A complete function to extend forward paths from (d - 1) to d changes.// Return true if a path overlaps reverse path of (d - 1) changes in its diagonal.const extendOverlappablePathsF = (  d,  aStart,  aEnd,  bStart,  bEnd,  isCommon,  aIndexesF,  iMaxF,  aIndexesR,  iMaxR,  division // update prop values if return true) => {  const bF = bStart - aStart; // bIndex = bF + aIndex - kF  const aLength = aEnd - aStart;  const bLength = bEnd - bStart;  const baDeltaLength = bLength - aLength; // kF = kR - baDeltaLength  // Range of diagonals in which forward and reverse paths might overlap.  const kMinOverlapF = -baDeltaLength - (d - 1); // -(d - 1) <= kR  const kMaxOverlapF = -baDeltaLength + (d - 1); // kR <= (d - 1)  let aIndexPrev1 = NOT_YET_SET; // prev value of [iF - 1] in next iteration  // Optimization: skip diagonals in which paths cannot ever overlap.  const nF = d < iMaxF ? d : iMaxF; // The diagonals kF = 2 * iF - d are odd when d is odd and even when d is even.  for (let iF = 0, kF = -d; iF <= nF; iF += 1, kF += 2) {    // To get first point of path segment, move one change in forward direction    // from last point of previous path segment in an adjacent diagonal.    // In first iteration when iF === 0 and kF === -d always insert.    // In last possible iteration when iF === d and kF === d always delete.    const insert = iF === 0 || (iF !== d && aIndexPrev1 < aIndexesF[iF]);    const aLastPrev = insert ? aIndexesF[iF] : aIndexPrev1;    const aFirst = insert      ? aLastPrev // vertical to insert from b      : aLastPrev + 1; // horizontal to delete from a    // To get last point of path segment, move along diagonal of common items.    const bFirst = bF + aFirst - kF;    const nCommonF = countCommonItemsF(      aFirst + 1,      aEnd,      bFirst + 1,      bEnd,      isCommon    );    const aLast = aFirst + nCommonF;    aIndexPrev1 = aIndexesF[iF];    aIndexesF[iF] = aLast;    if (kMinOverlapF <= kF && kF <= kMaxOverlapF) {      // Solve for iR of reverse path with (d - 1) changes in diagonal kF:      // kR = kF + baDeltaLength      // kR = (d - 1) - 2 * iR      const iR = (d - 1 - (kF + baDeltaLength)) / 2; // If this forward path overlaps the reverse path in this diagonal,      // then this is the middle change of the index intervals.      if (iR <= iMaxR && aIndexesR[iR] - 1 <= aLast) {        // Unlike the Myers algorithm which finds only the middle “snake”        // this package can find two common subsequences per division.        // Last point of previous path segment is on an adjacent diagonal.        const bLastPrev = bF + aLastPrev - (insert ? kF + 1 : kF - 1); // Because of invariant that intervals preceding the middle change        // cannot have common items at the end,        // move in reverse direction along a diagonal of common items.        const nCommonR = countCommonItemsR(          aStart,          aLastPrev,          bStart,          bLastPrev,          isCommon        );        const aIndexPrevFirst = aLastPrev - nCommonR;        const bIndexPrevFirst = bLastPrev - nCommonR;        const aEndPreceding = aIndexPrevFirst + 1;        const bEndPreceding = bIndexPrevFirst + 1;        division.nChangePreceding = d - 1;        if (d - 1 === aEndPreceding + bEndPreceding - aStart - bStart) {          // Optimization: number of preceding changes in forward direction          // is equal to number of items in preceding interval,          // therefore it cannot contain any common items.          division.aEndPreceding = aStart;          division.bEndPreceding = bStart;        } else {          division.aEndPreceding = aEndPreceding;          division.bEndPreceding = bEndPreceding;        }        division.nCommonPreceding = nCommonR;        if (nCommonR !== 0) {          division.aCommonPreceding = aEndPreceding;          division.bCommonPreceding = bEndPreceding;        }        division.nCommonFollowing = nCommonF;        if (nCommonF !== 0) {          division.aCommonFollowing = aFirst + 1;          division.bCommonFollowing = bFirst + 1;        }        const aStartFollowing = aLast + 1;        const bStartFollowing = bFirst + nCommonF + 1;        division.nChangeFollowing = d - 1;        if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {          // Optimization: number of changes in reverse direction          // is equal to number of items in following interval,          // therefore it cannot contain any common items.          division.aStartFollowing = aEnd;          division.bStartFollowing = bEnd;        } else {          division.aStartFollowing = aStartFollowing;          division.bStartFollowing = bStartFollowing;        }        return true;      }    }  }  return false;}; // A complete function to extend reverse paths from (d - 1) to d changes.// Return true if a path overlaps forward path of d changes in its diagonal.const extendOverlappablePathsR = (  d,  aStart,  aEnd,  bStart,  bEnd,  isCommon,  aIndexesF,  iMaxF,  aIndexesR,  iMaxR,  division // update prop values if return true) => {  const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR  const aLength = aEnd - aStart;  const bLength = bEnd - bStart;  const baDeltaLength = bLength - aLength; // kR = kF + baDeltaLength  // Range of diagonals in which forward and reverse paths might overlap.  const kMinOverlapR = baDeltaLength - d; // -d <= kF  const kMaxOverlapR = baDeltaLength + d; // kF <= d  let aIndexPrev1 = NOT_YET_SET; // prev value of [iR - 1] in next iteration  // Optimization: skip diagonals in which paths cannot ever overlap.  const nR = d < iMaxR ? d : iMaxR; // The diagonals kR = d - 2 * iR are odd when d is odd and even when d is even.  for (let iR = 0, kR = d; iR <= nR; iR += 1, kR -= 2) {    // To get first point of path segment, move one change in reverse direction    // from last point of previous path segment in an adjacent diagonal.    // In first iteration when iR === 0 and kR === d always insert.    // In last possible iteration when iR === d and kR === -d always delete.    const insert = iR === 0 || (iR !== d && aIndexesR[iR] < aIndexPrev1);    const aLastPrev = insert ? aIndexesR[iR] : aIndexPrev1;    const aFirst = insert      ? aLastPrev // vertical to insert from b      : aLastPrev - 1; // horizontal to delete from a    // To get last point of path segment, move along diagonal of common items.    const bFirst = bR + aFirst - kR;    const nCommonR = countCommonItemsR(      aStart,      aFirst - 1,      bStart,      bFirst - 1,      isCommon    );    const aLast = aFirst - nCommonR;    aIndexPrev1 = aIndexesR[iR];    aIndexesR[iR] = aLast;    if (kMinOverlapR <= kR && kR <= kMaxOverlapR) {      // Solve for iF of forward path with d changes in diagonal kR:      // kF = kR - baDeltaLength      // kF = 2 * iF - d      const iF = (d + (kR - baDeltaLength)) / 2; // If this reverse path overlaps the forward path in this diagonal,      // then this is a middle change of the index intervals.      if (iF <= iMaxF && aLast - 1 <= aIndexesF[iF]) {        const bLast = bFirst - nCommonR;        division.nChangePreceding = d;        if (d === aLast + bLast - aStart - bStart) {          // Optimization: number of changes in reverse direction          // is equal to number of items in preceding interval,          // therefore it cannot contain any common items.          division.aEndPreceding = aStart;          division.bEndPreceding = bStart;        } else {          division.aEndPreceding = aLast;          division.bEndPreceding = bLast;        }        division.nCommonPreceding = nCommonR;        if (nCommonR !== 0) {          // The last point of reverse path segment is start of common subsequence.          division.aCommonPreceding = aLast;          division.bCommonPreceding = bLast;        }        division.nChangeFollowing = d - 1;        if (d === 1) {          // There is no previous path segment.          division.nCommonFollowing = 0;          division.aStartFollowing = aEnd;          division.bStartFollowing = bEnd;        } else {          // Unlike the Myers algorithm which finds only the middle “snake”          // this package can find two common subsequences per division.          // Last point of previous path segment is on an adjacent diagonal.          const bLastPrev = bR + aLastPrev - (insert ? kR - 1 : kR + 1); // Because of invariant that intervals following the middle change          // cannot have common items at the start,          // move in forward direction along a diagonal of common items.          const nCommonF = countCommonItemsF(            aLastPrev,            aEnd,            bLastPrev,            bEnd,            isCommon          );          division.nCommonFollowing = nCommonF;          if (nCommonF !== 0) {            // The last point of reverse path segment is start of common subsequence.            division.aCommonFollowing = aLastPrev;            division.bCommonFollowing = bLastPrev;          }          const aStartFollowing = aLastPrev + nCommonF; // aFirstPrev          const bStartFollowing = bLastPrev + nCommonF; // bFirstPrev          if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {            // Optimization: number of changes in forward direction            // is equal to number of items in following interval,            // therefore it cannot contain any common items.            division.aStartFollowing = aEnd;            division.bStartFollowing = bEnd;          } else {            division.aStartFollowing = aStartFollowing;            division.bStartFollowing = bStartFollowing;          }        }        return true;      }    }  }  return false;}; // Given index intervals and input function to compare items at indexes,// divide at the middle change.//// DO NOT CALL if start === end, because interval cannot contain common items// and because this function will throw the “no overlap” error.const divide = (  nChange,  aStart,  aEnd,  bStart,  bEnd,  isCommon,  aIndexesF,  aIndexesR,  division // output) => {  const bF = bStart - aStart; // bIndex = bF + aIndex - kF  const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR  const aLength = aEnd - aStart;  const bLength = bEnd - bStart; // Because graph has square or portrait orientation,  // length difference is minimum number of items to insert from b.  // Corresponding forward and reverse diagonals in graph  // depend on length difference of the sequences:  // kF = kR - baDeltaLength  // kR = kF + baDeltaLength  const baDeltaLength = bLength - aLength; // Optimization: max diagonal in graph intersects corner of shorter side.  let iMaxF = aLength;  let iMaxR = aLength; // Initialize no changes yet in forward or reverse direction:  aIndexesF[0] = aStart - 1; // at open start of interval, outside closed start  aIndexesR[0] = aEnd; // at open end of interval  if (baDeltaLength % 2 === 0) {    // The number of changes in paths is 2 * d if length difference is even.    const dMin = (nChange || baDeltaLength) / 2;    const dMax = (aLength + bLength) / 2;    for (let d = 1; d <= dMax; d += 1) {      iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);      if (d < dMin) {        iMaxR = extendPathsR(d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR);      } else if (        // If a reverse path overlaps a forward path in the same diagonal,        // return a division of the index intervals at the middle change.        extendOverlappablePathsR(          d,          aStart,          aEnd,          bStart,          bEnd,          isCommon,          aIndexesF,          iMaxF,          aIndexesR,          iMaxR,          division        )      ) {        return;      }    }  } else {    // The number of changes in paths is 2 * d - 1 if length difference is odd.    const dMin = ((nChange || baDeltaLength) + 1) / 2;    const dMax = (aLength + bLength + 1) / 2; // Unroll first half iteration so loop extends the relevant pairs of paths.    // Because of invariant that intervals have no common items at start or end,    // and limitation not to call divide with empty intervals,    // therefore it cannot be called if a forward path with one change    // would overlap a reverse path with no changes, even if dMin === 1.    let d = 1;    iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);    for (d += 1; d <= dMax; d += 1) {      iMaxR = extendPathsR(        d - 1,        aStart,        bStart,        bR,        isCommon,        aIndexesR,        iMaxR      );      if (d < dMin) {        iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);      } else if (        // If a forward path overlaps a reverse path in the same diagonal,        // return a division of the index intervals at the middle change.        extendOverlappablePathsF(          d,          aStart,          aEnd,          bStart,          bEnd,          isCommon,          aIndexesF,          iMaxF,          aIndexesR,          iMaxR,          division        )      ) {        return;      }    }  }  /* istanbul ignore next */  throw new Error(    `${pkg}: no overlap aStart=${aStart} aEnd=${aEnd} bStart=${bStart} bEnd=${bEnd}`  );}; // Given index intervals and input function to compare items at indexes,// return by output function the number of adjacent items and starting indexes// of each common subsequence. Divide and conquer with only linear space.//// The index intervals are half open [start, end) like array slice method.// DO NOT CALL if start === end, because interval cannot contain common items// and because divide function will throw the “no overlap” error.const findSubsequences = (  nChange,  aStart,  aEnd,  bStart,  bEnd,  transposed,  callbacks,  aIndexesF,  aIndexesR,  division // temporary memory, not input nor output) => {  if (bEnd - bStart < aEnd - aStart) {    // Transpose graph so it has portrait instead of landscape orientation.    // Always compare shorter to longer sequence for consistency and optimization.    transposed = !transposed;    if (transposed && callbacks.length === 1) {      // Lazily wrap callback functions to swap args if graph is transposed.      const {foundSubsequence, isCommon} = callbacks[0];      callbacks[1] = {        foundSubsequence: (nCommon, bCommon, aCommon) => {          foundSubsequence(nCommon, aCommon, bCommon);        },        isCommon: (bIndex, aIndex) => isCommon(aIndex, bIndex)      };    }    const tStart = aStart;    const tEnd = aEnd;    aStart = bStart;    aEnd = bEnd;    bStart = tStart;    bEnd = tEnd;  }  const {foundSubsequence, isCommon} = callbacks[transposed ? 1 : 0]; // Divide the index intervals at the middle change.  divide(    nChange,    aStart,    aEnd,    bStart,    bEnd,    isCommon,    aIndexesF,    aIndexesR,    division  );  const {    nChangePreceding,    aEndPreceding,    bEndPreceding,    nCommonPreceding,    aCommonPreceding,    bCommonPreceding,    nCommonFollowing,    aCommonFollowing,    bCommonFollowing,    nChangeFollowing,    aStartFollowing,    bStartFollowing  } = division; // Unless either index interval is empty, they might contain common items.  if (aStart < aEndPreceding && bStart < bEndPreceding) {    // Recursely find and return common subsequences preceding the division.    findSubsequences(      nChangePreceding,      aStart,      aEndPreceding,      bStart,      bEndPreceding,      transposed,      callbacks,      aIndexesF,      aIndexesR,      division    );  } // Return common subsequences that are adjacent to the middle change.  if (nCommonPreceding !== 0) {    foundSubsequence(nCommonPreceding, aCommonPreceding, bCommonPreceding);  }  if (nCommonFollowing !== 0) {    foundSubsequence(nCommonFollowing, aCommonFollowing, bCommonFollowing);  } // Unless either index interval is empty, they might contain common items.  if (aStartFollowing < aEnd && bStartFollowing < bEnd) {    // Recursely find and return common subsequences following the division.    findSubsequences(      nChangeFollowing,      aStartFollowing,      aEnd,      bStartFollowing,      bEnd,      transposed,      callbacks,      aIndexesF,      aIndexesR,      division    );  }};const validateLength = (name, arg) => {  if (typeof arg !== 'number') {    throw new TypeError(`${pkg}: ${name} typeof ${typeof arg} is not a number`);  }  if (!Number.isSafeInteger(arg)) {    throw new RangeError(`${pkg}: ${name} value ${arg} is not a safe integer`);  }  if (arg < 0) {    throw new RangeError(`${pkg}: ${name} value ${arg} is a negative integer`);  }};const validateCallback = (name, arg) => {  const type = typeof arg;  if (type !== 'function') {    throw new TypeError(`${pkg}: ${name} typeof ${type} is not a function`);  }}; // Compare items in two sequences to find a longest common subsequence.// Given lengths of sequences and input function to compare items at indexes,// return by output function the number of adjacent items and starting indexes// of each common subsequence.function diffSequence(aLength, bLength, isCommon, foundSubsequence) {  validateLength('aLength', aLength);  validateLength('bLength', bLength);  validateCallback('isCommon', isCommon);  validateCallback('foundSubsequence', foundSubsequence); // Count common items from the start in the forward direction.  const nCommonF = countCommonItemsF(0, aLength, 0, bLength, isCommon);  if (nCommonF !== 0) {    foundSubsequence(nCommonF, 0, 0);  } // Unless both sequences consist of common items only,  // find common items in the half-trimmed index intervals.  if (aLength !== nCommonF || bLength !== nCommonF) {    // Invariant: intervals do not have common items at the start.    // The start of an index interval is closed like array slice method.    const aStart = nCommonF;    const bStart = nCommonF; // Count common items from the end in the reverse direction.    const nCommonR = countCommonItemsR(      aStart,      aLength - 1,      bStart,      bLength - 1,      isCommon    ); // Invariant: intervals do not have common items at the end.    // The end of an index interval is open like array slice method.    const aEnd = aLength - nCommonR;    const bEnd = bLength - nCommonR; // Unless one sequence consists of common items only,    // therefore the other trimmed index interval consists of changes only,    // find common items in the trimmed index intervals.    const nCommonFR = nCommonF + nCommonR;    if (aLength !== nCommonFR && bLength !== nCommonFR) {      const nChange = 0; // number of change items is not yet known      const transposed = false; // call the original unwrapped functions      const callbacks = [        {          foundSubsequence,          isCommon        }      ]; // Indexes in sequence a of last points in furthest reaching paths      // from outside the start at top left in the forward direction:      const aIndexesF = [NOT_YET_SET]; // from the end at bottom right in the reverse direction:      const aIndexesR = [NOT_YET_SET]; // Initialize one object as output of all calls to divide function.      const division = {        aCommonFollowing: NOT_YET_SET,        aCommonPreceding: NOT_YET_SET,        aEndPreceding: NOT_YET_SET,        aStartFollowing: NOT_YET_SET,        bCommonFollowing: NOT_YET_SET,        bCommonPreceding: NOT_YET_SET,        bEndPreceding: NOT_YET_SET,        bStartFollowing: NOT_YET_SET,        nChangeFollowing: NOT_YET_SET,        nChangePreceding: NOT_YET_SET,        nCommonFollowing: NOT_YET_SET,        nCommonPreceding: NOT_YET_SET      }; // Find and return common subsequences in the trimmed index intervals.      findSubsequences(        nChange,        aStart,        aEnd,        bStart,        bEnd,        transposed,        callbacks,        aIndexesF,        aIndexesR,        division      );    }    if (nCommonR !== 0) {      foundSubsequence(nCommonR, aEnd, bEnd);    }  }}
 |